
Dynamic Programming
Lecture 07.01

by Marina Barsky

Problem: the cheapest path in a
special grid

g

a

t

a

c

a

gcacta

E

S

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1$

1$ 1$

1$ 1$

Free

pass

Output:

the cheapest path
from (0,0) to (6,6)

Input:

Without the map

g

1a

1t

1a

1c

a

gcacta

E

S

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1$

1$ 1$

1$ 1$

Free

pass

● Without additional

information, we will always

head South-East hoping to

reach the destination faster

● We will pay 4$

● However a better (cheaper)

path exists with more free

cells

Sub-problems approach

g

a

t

a

c

a

gcacta

E

S

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1$

1$ 1$

1$ 1$

If we knew the cheapest paths

from (0,0) to (5,5)

from (0,0) to (6,5)

from (0,0) to (5,6)

we could choose the best last step

to the destination:

If
?

1$

1$?

? 2

3

4

Sub-problems approach

g

a

t

a

c

a

gcacta

E

S

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1$

1$ 1$

1$ 1$

And this is true for any cell – what

path to choose depends on the

cheapest paths to the left, upper,

and upper-left corner.

Since we choosing only 1 step, we

can take the min of the result

?
1$

1$

?

? 2

3

4

1$

1$ 2

3

4

3

If then

Recurrence relation –
base condition

g

a

t

a

c

a

gcacta

E

S

0 1 2 3 4 5 6
0

1

2

3

4

5

6

When i=0, there is no

cheaper way of going from

(0,0) to (0,j) than to pay j$ -

heading strictly to the right

(East)

The same for j=0.

The base condition:

if i=0 then COST(i,j)=j

if j=0 then COST(i,j)=i

Recurrence relation
(for i>0 and j>0)

1$

1$

3

4 2
COST(i-1,j)+1

COST(i,j)= min COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)

For each case, what is the best choice?

1$

1$

4

4 4

1$

1$

3

4 4

1$

1$

4

4 2

1$

Recurrence relation
(for i>0 and j>0)

1$

1$

3

4 2
COST(i-1,j)+1

COST(i,j)= min COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)

For each case, what is the best choice?

1$

1$

4

4 4

1$

1$

3

4 4

1$

1$

4

4 2
1$

4 4 3

Recursive algorithm

algorithm cheapestPath (array diagonalCost, N, M)

return cost (N, M, diagonalCost)

algorithm cost (i, j, diagonalCost)

if i=0 then

return j

if j=0 then

return i

return min (cost (i-1, j) +1, cost (i, j-1)+1, cost (i-1, j-1)+diagonalCost [i] [j])

COST(i-1,j)+1

COST(i,j)= min COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)

The recursion tree: O(3N)

O(3N) ?

But there are only N*M different combinations (i,j)!

Recursive algorithm: O(3N)

The algorithm is exponential in N because

we call the recursive function multiple

times with the same parameters!

Idea 1: store intermediate results

• Store the results of the cost(i,j) in a 2D table – so they do
not need to be recomputed when needed again

• There are at most N2 different combinations of (i,j)

• For each combination of (i,j) we compute the cost(i,j) only
once

• When we need cost(i,j) again, we first check if it is already
computed

• This gives a total running time O(N2)

• The method of storing the results of recursive calls in a
lookup table is called recursion with memoization

Idea 2: The bottom-up computation

• In this particular problem we would need to compute the
cost for all combinations of (i, j)

• Hence, instead of starting from cost(N,M) - fill in the best
values for each cell of N*M table starting from the lowest
values

The bottom-up computation

• Create a table of size(NxM) to store results of cost(i, j) for
each 0 ≤ i ≤ N and 0 ≤ j ≤ M

• First, fill-in the basic values of recursion – for i=0 and for j=0

• Apply recursive formula for computing the value of each cell
from the lowest numbers of i and j to the highest (by rows
or by columns)

• At the end, we will have the cost of the best path in the cell
(N, M)

The recurrence relation: stays the same

COST(i-1,j)+1

COST(i,j)=min COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)

The main relation (for i>0 and j>0)

if i=0 then COST(i,j)=j

if j=0 then COST(i,j)=i

The base condition:

We change:

the order of computation

Fill values for i=0 and for j=0
(the base case)

6

5

4

3

2

1

6543210

E

S

There is no cheaper way
of going to the point
(2,0) than paying 2 $

Fill values for i=1
(from left to right)

6

5

4

3

2

5432101

6543210

E

S

Cell(1,2)=1

since the cheapest
possible way is to
continue the free path
through the cell (1,1)

Fill the entire table
(left-to-right top-down)

3444456

3333345

3223234

3212223

4321112

5432101

6543210

E

S

The overall cheapest

possible path costs 3$

But what is this path?

Keeping track of the source

6

5

4

3

2

1

6543210

E

S

6

5

4

3

2

5432101

6543210

E

S

Keeping track of the source

3444456

3333345

3223234

3212223

4321112

5432101

6543210

E

S

Keeping track of the source

Trace back –
how did we get the path with the cost 3?

3444456

3333345

3223234

3212223

4321112

5432101

6543210

E

S

Our first Dynamic Programming algorithm

allocate array DPTable (NxM)

DPTable [0][0]:=0

for i from 1 to N:

DPTable [i][0]:=i

for j from 1 to M:

DPTable [0][j]:=j

for i from 1 to N:

for j from 1 to M:

DPtable [i][j]:=min (DPtable [i-1][j-1]+ diagonalCost [i][j],

DPtable [i-1][j]+1, DPtable [i][j-1]+ 1)

return DPTable [N][M]

Algorithm: cheapestPath (diagonalCost NxM)

2 nested loops: O(N2)

Dynamic programming: when

❏ We want to optimize something: min, max
❏ The solution to the problem depends on the

solutions to subproblems

❏ We would need the solutions to all
subproblems

❏ Subproblems overlap

Dynamic programming: how

❏ The recurrence relation

❏ The bottom-up computation

❏ The traceback

“Programming” in “Dynamic programming”

has nothing to do with programming!

● Richard Bellman developed this idea in
1950s working on an Air Force project

● At that time, his approach seemed
completely impractical

● He wanted to hide that he is really doing
pure math from the Secretary of Defense Richard Bellman

. . . What name could I choose? I was interested in planning but

planning is not a good word for various reasons. I decided therefore

to use the word “programming” and I wanted to get across the idea

that this was dynamic. It was something not even a Congressman

could object to. So I used it as an umbrella for my activities.

❏ Edit distance

❏ Knapsack 01

❏ Shortest paths

Representative problems

Edit distance

Transforming one sequence into
another: edit operations

S1 a c t a t g

S2 a t a c a g

❏We can transform the first string S1 into the second S2
by applying a sequence of edit operations on S1 :
❏ Deleting 1 symbol
❏ Inserting 1 symbol
❏ Replacing 1 symbol

In total, 4 edit
operations

Delete c Insert a Insert c Delete t

String alignment

❏ An alignment of 2 strings is obtained by first inserting
spaces (gaps), either into or at the end of both strings, and
then placing 2 resulting strings one above the other, so
that every character or space in either string is opposite a
single character or space in the other string

S1 a c t - - a t g

S2 a - t a c a - g

4 gaps,

no mismatches

Alignment

Edit distance: definition

S1 a c t a t g

S2 a t a c a g

• The edit distance between two strings is defined as the
minimum number of edit operations needed to transform
one string into another

In total, 3 edit
operations

Delete c Replace t Insert a

Optimal alignment

S1 a c t a t g

S2 a t a c a g

❏An optimal alignment is obtained from the calculation of
the edit distance

Edit distance=3
Delete c Replace t Insert a

Optimal Alignment

Is this really the smallest number of edit operations?

How do we compute edit distance in general?

The edit distance problem

Input: 2 strings S1 and S2

Output: the edit distance between two
strings along with a sequence of the
operations which describe the
transformation

Full analogy with the cheapest path

g

a

t

a

c

a

S1

gcactaS2

E

N

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1

deletion

1 insertion
1

1

1

replacement

Cost 0 –

characters

match

The dynamic programming solution to
the edit distance problem

Trivially follows from the solution for the cheapest path:

◆ If we moved strictly down in the grid, we deleted
(ignored) 1 symbol from S1

◆ If we moved strictly to the right, we inserted 1 symbol
from S2 into S1

◆ If we moved by diagonal of cost 0, we matched the
corresponding characters

◆ If we moved by diagonal of cost 1, we replaced one
symbol in S1 with the corresponding symbol in S2

Useful abstraction: edit graph

t

a

c

a

S1

a t c aS2

j

i

An edit graph for a pair of

strings S1 and S2 has

(N+1)*(M+1) vertices,

each labeled with a

corresponding pair (i,j),

0 ≤ i ≤ N, 0 ≤ j ≤ M

The edges are directed

and their weight depends

on the specific string

problem: for the edit

distance problem – red

edges have cost 0, black

edges have cost 1

0,0 0,1 0,2 0,3 0,4

1,0

2,0

3,0

4,0

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

t

a

c

a

S1

a t c aS2

j

i

0,0 0,1 0,2 0,3 0,4

1,0

2,0

3,0

4,0

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

The cost of a cheapest

path from vertex (0,0) to

vertex (N,M) in this edit

graph corresponds to

the edit distance

between S1 and S2,

and the path itself

represents a series of

edit operations and an

optimal alignment of S1

with S2

The cheapest path in the edit graph

Calculating edit distance.
Base condition

t

a

c

a 1

0S1

S2

j

i

a t c a

0 1 2 3 4
0

1

2

3

4

The minimum number

of edit operations we

need in order to

transform string a into

an empty string (of

length 0) is 1

(deletion)

Therefore the minimum

edit distance between ε

and a is 1

Calculating edit distance.
Base condition

t 4

a 3

c 2

a 1

0S1

S2

j

i

a t c a

0 1 2 3 4
0

1

2

3

4

The same is true for ε

and ac, aca, acat

Calculating edit distance.
Base condition

t 4

a 3

c 2

a 1

0S1

S2

j

i

a t c a

0 1 2 3 4
0

1

2

3

4

In order to transform ε into

a, we need to insert 1

character. This is the best

way to do it, there is no

cheaper way.

The same for

transforming ε into at,

atc, atca with 2, 3, 4

insertions respectively

Calculating edit distance.

i>0 and j>0Recursion for

S2 a t c a

S1

a

0

1

1 2 3 4
j

c 2

a 3

t 4

i

There are only 3 different ways to move

through the next cell in the graph:

1. Increase both i and j (diagonal)

if S1[i]≠S2[j] : 1 edit

if S1[i]=S2[j] : 0 edits

2. Increase only i (insert S1[i]) with the

cost 1

3. Increase only j (delete - ignore S2[j])

with the cost 1

Calculating edit distance.

i>0 and j>0Recursion for

S2 a t c a

S1

a

0

1

1 2 3 4
j

c 2

a 3

t 4

i

Thus, if we know the edit distance

D[i-1,j-1], D[i-1,j] and D[i,j-1],

we can correctly calculate

D[i,j]

This is true since there are no other

ways of moving through cell [i][j].

Reaching the top, left and top-left

corners by different paths cannot

produce a better value than is

already in these 3 cells, since they

contain the minimum cost by

definition

D(i-1,j)+1

min D(i,j-1)+1

D(i-1,j-1)+c(i,j)

Calculating edit distance.

i>0 and j>0Recursion for

S2 a t c a

S1

a

0

1

1

0

2

1

3

2

4

3 j

c 2

a 3

t 4

i

D(i,j =

0 if S1[i]=S2[j]

where c(i,j) =

1 if S1[i] ≠S2[j]

Calculating edit distance.

i>0 and j>0Recursion for

S2 a t c a

S1

a

0

1

1

0

2

1

3

2

4

3 j

c 2 1 1 1 2

a 3

t 4

i

D(i-1,j)+1

min D(i,j-1)+1

D(i-1,j-1)+c(i,j)

D(i,j =

0 if S1[i]=S2[j]

where c(i,j) =

1 if S1[i] ≠S2[j]

Calculating edit distance.

i>0 and j>0Recursion for

S2 a t c a

S1

a

0

1

1 2

1

3

2

4
j0 3

c 2 1 1 1 2

a 3 2 2 2 1

t 4

i

D(i-1,j)+1

min D(i,j-1)+1

D(i-1,j-1)+c(i,j)

D(i,j =

0 if S1[i]=S2[j]

where c(i,j) =

1 if S1[i] ≠S2[j]

Calculating edit distance.

i>0 and j>0Recursion for

S2 a t c a

S1

a

0

1

1 2

1

3

2

4
j0 3

c 2 1 1 1 2

a 3 2 2 2 1

t 4 3 2 3 2

i

D(i-1,j)+1

min D(i,j-1)+1

D(i-1,j-1)+c(i,j)

D(i,j =

0 if S1[i]=S2[j]

where c(i,j) =

1 if S1[i] ≠S2[j]

The sequence of edit

operations

S2 a t c a

S1

a

0

1

1 2

1

3

2

4
j0 3

c 2 1 1 1 2

a 3 2 2 2 1

t 4 3 2 3 2

i

Place a character in S1

opposite to a character

in S2

Place a character in S1

opposite to a gap in S2

Place a character in S2

opposite to a gap in S1

S1 a - c a t

S2 a t c a -

Optimal alignment

S1 a - c a t

S2 a t c a -

Explanation:

S2 can be obtained from S1 by a series of the following edit

operations:

Insertion of t at position 2

Deletion of t at position 5

An optimal alignment is not
unique

S1 - a t t a a g

S2 t a - t c a g

S1 - a t t a a g

S2 t a t c a - g

2 different alignments with the optimal edit distance 3

