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Problem: the cheapest path in a 
special grid
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Output: 

the cheapest path 
from (0,0) to (6,6)

Input:



Without the map
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● Without additional 

information, we will always 

head South-East hoping to 

reach the destination faster

● We will pay 4$

● However a better (cheaper) 

path exists with more free 

cells



Sub-problems approach
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If we knew the cheapest paths 

from (0,0) to (5,5)

from (0,0) to (6,5)

from (0,0) to (5,6)

we could choose the best last step 

to the destination:
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Sub-problems approach
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And this is true for any cell – what 

path to choose depends on the 

cheapest paths to the left, upper, 

and upper-left corner. 

Since we choosing only 1 step, we 

can take the min of the result
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Recurrence relation –
base condition
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When i=0, there is no 

cheaper way of going from 

(0,0) to (0,j) than to pay j$ -

heading strictly to the right 

(East)

The same for j=0.

The base condition:

if i=0 then COST(i,j)=j

if j=0 then COST(i,j)=i



Recurrence relation
(for i>0 and j>0)
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COST(i-1,j)+1

COST(i,j)=  min      COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)

For each case, what is the best choice?
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Recurrence relation
(for i>0 and j>0)
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Recursive algorithm

algorithm cheapestPath ( array diagonalCost, N, M )

return cost ( N, M, diagonalCost )

algorithm cost ( i, j, diagonalCost)

if i=0 then

return j

if j=0 then

return i

return min (cost ( i-1, j ) +1, cost ( i, j-1)+1, cost ( i-1, j-1)+diagonalCost [i] [j] )

COST(i-1,j)+1

COST(i,j)=  min      COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)



The recursion tree: O(3N)

O(3N) ?

But there are only N*M different combinations (i,j)!



Recursive algorithm: O(3N) 

The algorithm is exponential in N because 

we call the recursive function multiple 

times with the same parameters!



Idea 1: store intermediate results

• Store the results of the cost(i,j) in a 2D table – so they do 
not need to be recomputed when needed again

• There are at most N2 different combinations of (i,j)

• For each combination of (i,j) we compute the cost(i,j) only 
once

• When we need cost(i,j) again, we first check if it is already 
computed

• This gives a total running time O(N2)

• The method of storing the results of recursive calls in a 
lookup table is called recursion with memoization



Idea 2: The bottom-up computation

• In this particular problem we would need to compute the 
cost for all combinations of (i, j)

• Hence, instead of starting from cost(N,M) - fill in the best 
values for each cell of N*M table starting from the lowest 
values



The bottom-up computation

• Create a table of size(NxM) to store results of cost(i, j) for 
each 0 ≤ i ≤ N  and 0 ≤ j ≤ M

• First, fill-in the basic values of recursion – for i=0 and for j=0

• Apply recursive formula for computing the value of each cell 
from the lowest numbers of i and j to the highest (by rows 
or by columns)

• At the end, we will have the cost of the best path in the cell 
(N, M) 



The recurrence relation: stays the same

COST(i-1,j)+1

COST(i,j)=min      COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)

The main relation ( for i>0 and j>0)

if i=0 then COST(i,j)=j

if j=0 then COST(i,j)=i

The base condition:

We change:

the order of computation



Fill values for i=0 and for j=0 
(the base case)
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of going to the point 
(2,0) than paying 2 $



Fill values for i=1 
(from left to right)
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Cell(1,2)=1

since the cheapest 
possible way is to 
continue the free path 
through the cell (1,1)



Fill the entire table 
(left-to-right top-down)
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3223234

3212223
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The overall cheapest 

possible path costs 3$

But what is this path?



Keeping track of the source
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Trace back –
how did we get the path with the cost 3?

3444456

3333345

3223234

3212223

4321112

5432101

6543210

E

S



Our first Dynamic Programming algorithm

allocate array DPTable (NxM)

DPTable [0][0]:=0

for i from 1 to N:

DPTable [i][0]:=i

for j from 1 to M:

DPTable [0][j]:=j

for i from 1 to N:

for j from 1 to M:

DPtable [i][j]:=min (DPtable [i-1][j-1]+ diagonalCost [i][j],

DPtable [i-1][j]+1, DPtable [i][j-1]+ 1)

return DPTable [N][M]

Algorithm: cheapestPath (diagonalCost NxM)

2 nested loops: O(N2)



Dynamic programming: when

❏ We want to optimize something: min, max
❏ The solution to the problem depends on the  

solutions to subproblems

❏ We would need the solutions to all 
subproblems

❏ Subproblems overlap



Dynamic programming: how

❏ The recurrence relation

❏ The bottom-up computation

❏ The traceback



“Programming” in “Dynamic programming”  

has nothing to do with programming!

● Richard Bellman developed this idea in 
1950s working on an Air Force project 

● At that time, his approach seemed  
completely impractical 

● He wanted to hide that he is really doing 
pure math from the Secretary of Defense Richard  Bellman

. . . What name could I choose? I was interested in planning but 

planning  is not a good word for various reasons.  I decided therefore 

to use the word “programming” and I wanted to get across the idea 

that this was dynamic. It was something not even a Congressman 

could  object to. So I used it as an umbrella for my activities.



❏ Edit distance

❏ Knapsack 01

❏ Shortest paths

Representative problems



Edit distance



Transforming one sequence into 
another: edit operations

S1 a c t a t g

S2 a t a c a g

❏We can transform the first string S1 into the second S2 
by applying a sequence of edit operations on S1 :
❏ Deleting 1 symbol
❏ Inserting 1 symbol
❏ Replacing 1 symbol

In total, 4 edit 
operations

Delete c Insert a Insert c Delete t



String alignment

❏ An alignment of 2 strings is obtained by first inserting 
spaces (gaps), either into or at the end of both strings, and 
then placing 2 resulting strings one above the other, so 
that every character or space in either string is opposite a 
single character or space in the other string

S1 a c t - - a t g

S2 a - t a c a - g

4 gaps, 

no mismatches

Alignment



Edit distance: definition

S1 a c t a t g

S2 a t a c a g

• The edit distance between two strings is defined as the 
minimum number of edit operations needed to transform 
one string into another

In total, 3 edit 
operations

Delete c Replace t Insert a



Optimal alignment

S1 a c t a t g

S2 a t a c a g

❏An optimal alignment is obtained from the calculation of 
the edit distance

Edit distance=3
Delete c Replace t Insert a

Optimal Alignment

Is this really the smallest number of edit operations?

How do we compute edit distance in general?



The edit distance problem

Input: 2 strings S1 and S2

Output: the edit distance between two 
strings along with a sequence of the 
operations which describe the 
transformation



Full analogy with the cheapest path
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The dynamic programming solution to 
the edit distance problem

Trivially follows from the solution for the cheapest path:

◆ If we moved strictly down in the grid, we deleted 
(ignored) 1 symbol from S1

◆ If we moved strictly to the right, we inserted 1 symbol 
from S2 into S1

◆ If we moved by diagonal of cost 0, we matched the 
corresponding characters

◆ If we moved by diagonal of cost 1, we replaced one 
symbol in S1 with the corresponding symbol in S2



Useful abstraction: edit graph
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An edit graph for a pair of  

strings S1 and S2 has  

(N+1)*(M+1) vertices,  

each labeled with a  

corresponding pair (i,j), 

0 ≤ i ≤ N, 0 ≤ j ≤ M

The edges are directed 

and their weight depends  

on the specific string  

problem: for the edit  

distance problem – red  

edges have cost 0, black  

edges have cost 1
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The cost of a  cheapest 

path from vertex (0,0) to 

vertex  (N,M) in this edit  

graph corresponds to  

the edit distance

between S1 and S2,  

and the path itself  

represents a series of  

edit operations and an 

optimal alignment of S1 

with S2

The cheapest path in the edit graph



Calculating edit distance.  
Base condition
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The minimum number  

of edit operations we  

need in order to  

transform string a into 

an empty  string (of 

length 0) is 1 

(deletion)

Therefore the minimum

edit distance between ε

and a is 1



Calculating edit distance.  
Base condition
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Calculating edit distance.  
Base condition
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a, we need to insert 1 

character. This  is the best 

way to do it,  there is no 
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transforming ε into at, 
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insertions respectively



Calculating edit distance.

i>0 and j>0Recursion for
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There are only 3 different ways to move  

through the next cell in the graph:

1. Increase both i and j (diagonal)  

if S1[i]≠S2[j] : 1 edit

if S1[i]=S2[j] : 0 edits

2.   Increase only i (insert S1[i])  with the 

cost 1

3.   Increase only j (delete - ignore S2[j])  

with the cost 1



Calculating edit distance.

i>0 and j>0Recursion for
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Thus, if we know the edit distance

D[i-1,j-1], D[i-1,j] and D[i,j-1], 

we can  correctly calculate 

D[i,j]

This is true since there are no other 

ways of moving through cell [i][j]. 

Reaching the top, left and top-left 

corners by different  paths cannot 

produce a better value than is 

already in these 3 cells, since they 

contain  the minimum cost by 

definition



D(i-1,j)+1

min D(i,j-1)+1

D(i-1,j-1)+c(i,j)

Calculating edit distance.
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D(i,j =

0 if S1[i]=S2[j]

where c(i,j)  =

1 if S1[i] ≠S2[j]



Calculating edit distance.
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Calculating edit distance.

i>0 and j>0Recursion for

S2 a t c a

S1

a

0

1

1 2

1

3

2

4
j0 3

c 2 1 1 1 2

a 3 2 2 2 1

t 4

i

D(i-1,j)+1

min D(i,j-1)+1

D(i-1,j-1)+c(i,j)

D(i,j =

0 if S1[i]=S2[j]

where c(i,j)  =

1 if S1[i] ≠S2[j]



Calculating edit distance.
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The sequence of edit

operations

S2 a t c a

S1

a

0

1

1 2
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c 2 1 1 1 2

a 3 2 2 2 1

t 4 3 2 3 2
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Place a character in S1

opposite to a character

in S2

Place a character in S1

opposite to a gap in S2

Place a character in S2

opposite to a gap in S1

S1 a - c a t

S2 a t c a -



Optimal alignment 

S1 a - c a t

S2 a t c a -

Explanation:

S2 can be obtained from S1 by a series of the following edit 

operations:  

Insertion of t at position 2

Deletion of t at position 5



An optimal alignment is not  
unique

S1 - a t t a a g

S2 t a - t c a g

S1 - a t t a a g

S2 t a t c a - g

2 different alignments with the optimal edit distance 3


